Developing an implant to help the heart heal itself.
Medtech start up accelerates development of a circulatory support pump, designed to let the heart rest and heal without surgery, with the help of Rapid Prototyping technology.
Within the US alone some 2 million people affected by heart failure are too sick for medication leaving doctors with no option but to resort to surgical LVAD ( Left Ventricular Assist Device) or a heart transplant. Both options are considered a last resort due to high risk and cost factors but now a Houston based medtech start up Procyrion may have unlocked an alternative in the form of a minimally invasive, catheter-deployed device designed to offer long-term treatment by providing the opportunity for the heart to rest and heal.
Using fluid entrainment to augment native blood flow the Aortix device facilitates an acceleration of fluid, a net increase in cardiac output, reducing work of the heart through after load reduction. It is expected that the Aortix device may not just offer a treatment but also act as a preventative measure, treating younger, healthier patients before years of progressive damage occurs.
Speaking from a design and manufacturing standpoint, president and CEO of Procyrion, Benjamin Hertzog credited Rapid Prototyping with facilitating the fast paced device development;
“The system is quite complex, but at the same time, being an early-stage start up means we have to move really fast and have quick cycle times for our different design iterations. Rapid Prototyping makes even more design iterations possible due to the shortened cycle times from concept generation to testing”
The Aortix device is narrower than a pencil with a diameter of just 6mm, featuring incredibly think walls and tight tolerances which initially proved challenging for Rapid Prototyping technologies however speaking on the manufacture of such components Head of Product Development, Chris Durst, stated;
“What has been interesting is to see how the rapid prototyping technology has evolved in just the past two years…With each iteration we have been able to get higher reliability of the small parts that have the super-small features”
By using Rapid Prototyping technologies, namely SLA (Stereolithography) the team has seen a reduction in lead times from 8-12 weeks to less than a week and lowered costs from $1500 to $5 when compared to producing the blood pump impeller in PEEK.
Durst further iterated the teams belief in the importance of Rapid Prototyping in the Aortix device development stating;
“We would not be making the progress we are without the ability to employ Rapid Prototyping in multiple functional areas. I just keep going back to the one week where we tested 20 different pump configurations knowing we didn’t have to sacrifice any quality to save money by settling on average design. We didn’t need to stop at ‘good enough’ and move on to the next step; rather we were able to hone in on a better design because of Rapid Prototyping”
brought to you by
Archives
- February 2021
- October 2020
- October 2015
- September 2015
- August 2015
- June 2015
- May 2015
- April 2015
- March 2015
- January 2015
- December 2014
- November 2014
- October 2014
- September 2014
- August 2014
- July 2014
- June 2014
- May 2014
- April 2014
- March 2014
- February 2014
- January 2014
- December 2013
- September 2013
- August 2013
- July 2013
- June 2013
- May 2013
- April 2013
- March 2013
- February 2013
- January 2013
- October 2012
- September 2012
- August 2012
- July 2012
- June 2012
- May 2012
- April 2012
- March 2012
- February 2012
- January 2012
- December 2011
- November 2011
- October 2011
- September 2011
- August 2011
- July 2011
- June 2011
- May 2011
Recent Posts
Popular Posts
Categories
- 3D Printing (47)
- 3dprinting (31)
- CNC Machining (1)
- Low Volume Production (2)
- Rapid Prototyping (18)
- Selective Laser Sintering (19)
- Stereolithography (8)
- Vacuum Casting (1)