3D Printing the moon!
London based SinterHab envision a 3D printed Moon base baked from lunar dust.
Collaborating with NASA’s Jet Propulsion Laboratory a team of UK architects have developed plans for a modular architectural structure which would be build using microwaves, solar energy and lunar dust at the lunar south pole.
Based on a system of rigid models that can be pieced together to form a structure, and inspired by the formation of bubbles found in nature the team boast that their design and development concept could “significantly decrease mass, costs and environmental impact” as there would be no need to send glue or other building agents to the moon. Lunar dust would be bonded using microwaves and solar energy to heat the particles to the right temperature for natural bonding. Once sintered the lunar dust would produce a ceramic-like material.
The nano-sized iron particles in lunar dust can be heated up to 1500°C and melt it even in a domestic microwave oven. When heated and the temperature is maintained below the melting point, particles can be bond together to create the lunar habitat building blocks. The use of lunar dust helps mitigate hazards of contamination from the highly abrasive lunar dust.
The internal membrane system of SinterHab offers up to four times the volume of classic rigid modules at the same weight shipped from earth. Modules large enough to accommodate a green garden to recycle air and water for the lunar outpost could also be produced, offering higher levels of habitability and enhancing the comfort and psychological well-being of inhabitants.
This construction method is based on the Microwave Sinterator Free-form Additive Construction System (MS-FACS) with Scientists at NASA proposing the use of a six legged multi-purpose robot called ATHLETE , which would hold a microwave printer head, for the construction of walls and dome. Lunar dust would be excavated and manipulated by Chariot rover in bulldozer configuration and then fed to ATHLETE. This lunar dust would then be used to cover inflated membranes of Kevlar, Mylar and other materials.
brought to you by
Archives
- February 2021
- October 2020
- October 2015
- September 2015
- August 2015
- June 2015
- May 2015
- April 2015
- March 2015
- January 2015
- December 2014
- November 2014
- October 2014
- September 2014
- August 2014
- July 2014
- June 2014
- May 2014
- April 2014
- March 2014
- February 2014
- January 2014
- December 2013
- September 2013
- August 2013
- July 2013
- June 2013
- May 2013
- April 2013
- March 2013
- February 2013
- January 2013
- October 2012
- September 2012
- August 2012
- July 2012
- June 2012
- May 2012
- April 2012
- March 2012
- February 2012
- January 2012
- December 2011
- November 2011
- October 2011
- September 2011
- August 2011
- July 2011
- June 2011
- May 2011
Recent Posts
Popular Posts
Categories
- 3D Printing (47)
- 3dprinting (31)
- CNC Machining (1)
- Low Volume Production (2)
- Rapid Prototyping (18)
- Selective Laser Sintering (19)
- Stereolithography (8)
- Vacuum Casting (1)